Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5996, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472234

RESUMO

The geopolitical conflict between Russia and Ukraine has disrupted Europe's natural gas supplies, driving up gas prices and leading to a shift towards biomass for residential heating during colder months. This study assessed the consequent air quality and toxicological impacts in Milan, Italy, focusing on fine particulate matter (PM2.5, dp < 2.5 µm) emissions. PM2.5 samples were analyzed for their chemical composition and assessed for their oxidative potential using the dithiothreitol (DTT) assay across three periods reflecting residential heating deployment (RHD): pre-RHD, intra-RHD, and post-RHD periods. During the intra-RHD period, PM2.5 levels were significantly higher than those in other periods, with concentrations reaching 57.94 ± 7.57 µg/m3, indicating a deterioration in air quality. Moreover, levoglucosan was 9.2 times higher during the intra-RHD period compared to the pre-RHD period, correlating with elevated levels of elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs). These findings were compared with previous local studies before the conflict, underscoring a significant rise in biomass-related emissions. DTT assay levels during the intra-RHD were 2.1 times higher than those observed during the same period in 2022, strongly correlating with biomass burning emissions. Our findings highlight the necessity for policies to mitigate the indirect health effects of increased biomass burning emissions due to the energy crisis triggered by the geopolitical conflict.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Ucrânia , Monitoramento Ambiental , Poluição do Ar/análise , Material Particulado/análise , Itália , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano
2.
Atmos Environ (1994) ; 3192024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38250566

RESUMO

In this study, we developed two online monitors for total organic carbon (TOC) and water-soluble organic carbon (WSOC) measurements in fine (dp < 2.5µm) and coarse (2.5µm < dp < 10µm) particulate matter (PM), respectively. Their performance has been evaluated in laboratory and field tests to demonstrate the feasibility of using these monitors to measure near real-time concentrations, with consideration of their potential for being employed in long-term measurements. The fine PM collection setup was equipped with a versatile aerosol concentration enrichment system (VACES) connected to an aerosol-into-liquid-sampler (AILS), whereas two virtual impactors (VIs) in tandem with a modified BioSampler were used to collect coarse PM. These particle collection setups were in tandem with a Sievers M9 TOC analyzer to read TOC and WSOC concentrations in aqueous samples hourly. The average hourly TOC concentration measured by our developed monitors in fine and coarse PM were 5.17 ± 2.41 and 0.92 ± 0.29 µg/m3, respectively. In addition, our TOC readings showed good agreement and were comparable with those quantified using Sunset Lab EC/OC analyzer operating in parallel as a reference. Furthermore, we conducted field tests to produce diurnal profiles of fine PM-bound WSOC, which can show the effects of ambient temperature on maximum values in the nighttime chemistry of the winter, as well as on increased photochemical activities in afternoon peaks during the summer. According to our experimental campaign, WSOC mean values during the study period (3.07 µg/m3 for the winter and 2.7 µg/m3 for the summer) were in a comparable range with those of earlier studies in Los Angeles. Overall, our results corroborate the performance of our developed monitors in near real-time measurements of TOC and WSOC, which can be employed for future source apportionment studies in Los Angeles and other areas, aiding in understanding the health impacts of different pollution sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...